Robust Pitch Detection Based on Recurrence Analysis and Empirical Mode Decomposition

نویسنده

  • Jingfang Wang
چکیده

A new pitch detection method is designed by the recurrence analysis in this paper, which is combined of Empirical Mode Decomposition (EMD) and Elliptic Filter (EF). The Empirical Mode Decomposition (EMD) of Hilbert-Huang Transform (HHT) is utilized tosolve the problem, and a noisy voice is first filtered on the elliptic band filter. The two Intrinsic Mode Functions (IMF) are synthesized by EMD with maximum correlation of voice, and then the pitch be easily divided. The results show that the new method performance is better than the conventional autocorrelation algorithm and cepstrum method, especially in the part that the surd and the sonant are not evident, and get a high robustness in noisy environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

Pitch estimation of noisy speech signals using empirical mode decomposition

This paper presents a pitch estimation method of noisy speech signal using empirical mode decomposition (EMD). The normalized autocorrelation function (NACF) of the noisy speech signal is decomposed into a finite set of band-limited signals termed as intrinsic mode functions (IMFs) using EMD. The periodicity of one IMF is supposed to be equal to the accurate pitch period. A conventional autocor...

متن کامل

Nonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method

The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...

متن کامل

Blind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm

Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015